
Introduction to Objective-C

Kyrill Schmid,Lenz Belzner

Mobile und Verteilte Systeme

03.05.2017

1 / 22



Classes: Interface

Classes describe the properties and behavior (blueprints) for
particular objects. Class definition comprises two parts:

I Header files (.h) to define the public interface of a class

I Implementation files (.m) to implement (private) behavior

@interface Person : NSObject // erbt von NSObject

// Deklariere zwei Properties: firstName und lastName

@property NSString *firstName;

@property NSString *lastName;

// Deklariere dedizierte init-Methode und zwei Instanzmethoden

-(id)initWithFirstName:(NSString *)aFirstName lastName:(NSString *)aLastName;

-(void)setFirstName:(NSString *)aFirstName andLastName:(NSString *)aLastName;

-(void)sayHallo;

@end

2 / 22



Classes: Implementation

After we have defined the interface in our header file we add
another file called an implementation file (.m) where we add the
following:
-(id)initWithFirstName:(NSString *)aFirstName lastName:(NSString *)aLastName{

self = [super init];

if (self) {

_firstName = aFirstName;

_lastName = aLastName;

}

return self;

}

-(void)setFirstName:(NSString *)aFirstName andLastName:(NSString *)aLastName;{

_firstName = aFirstName;

_lastName = aLastName;

}

-(void)sayHallo{

NSLog(@"Hello World! My name is: %@ %@", [self firstName], [self lastName]);

}

3 / 22



Using Objects

To use objects we do the following:
#import <Foundation/Foundation.h>

#import "Person.h"

int main(int argc, const char * argv[]) {

// insert code here...

Person *p1 = [[Person alloc] initWithFirstName:@"Hans" lastName:@"Peter"];

[p1 sayHallo];

return 0;

}

4 / 22



Properties

Objective-C properties offer a way to encapsulate data

I Property declarations are included in the interface (.h):
@property NSString *firstName;

@property NSString *lastName;

I Attributes tell compiler which accessor methods should be
synthesized (default readwrite):
@property (nonatomic, readwrite) NSString *firstName;

@property (nonatomic, readwrite) NSString *lastName;

I Implicit declaration and implementation of getter and setters

I Implicit declaration of instance variables:
_fullname;

5 / 22



Accessor Methods

An object’s properties are accessed or set via accessor methods.
These accessor methods are automatically synthesized from the
compiler. Accessor methods have the following naming convention:

I getter method has same name as the property:
-(NSString *)firstName;

-(NSString *)lastName;

I setter method starts with set followed by capitalized property
name:
-(NSString *)setFirstName;

-(NSString *)setLastName;

6 / 22



Instance Variables

Properties are backed by an instance variable

I An instance variable is a variable that exists and holds it’s
value for the life of the object

I Instance variables can be accessed directly from any instance
method of the object

@property (readonly) NSSString *firstName; // creates also variable: _firstName

- (void)someMethod {

NSString *someString = @"Lduwig";

self.firstName = someString;

// or

[self setFirstName:someString];

// or

_firstName = someString;

}

7 / 22



Custom names

You can specify a custom instance variable name by telling the
compiler to synthesize:
@implementation Person

@synthesize firstName = myFirstName;

...

@end

8 / 22



Initialization

Within initialization methods one should always access instance
variables directly:
- (id)initWithFirstName:(NSString *)aFirstName

lastName:(NSString *)aLastName {

self = [super init];

if (self) {

_firstName = aFirstName;

_lastName = aLastName;

}

return self;

}

9 / 22



Message Passing

In Objective-C a method call is a message towards an object. The
most common way to send messages between objects is using
square brackets syntax:
Person *p1 = [[Person alloc] init];

[p1 sayHello];

I The reference on the left is called the receiver

I The message on the right is the name of the method to call
on that receiver

I Receiver type will be determined at runtime

I It is unsure whtether objects listen to message

10 / 22



alloc: allocate memory for an object

Memory for an objective-object is allocated dynamically for its
properties and inherited properties. This process is handled through
the call of alloc:
+ (id) alloc;

The return type of this method is: id. This special keyword used in
ObjC means: some kind of object (special pointer without an
asterisk). Calling alloc also clears out the memory allocated for the
object by setting them to zero.

11 / 22



init: initialize an object

Calling alloc needs to be combined with a call to init which is
another NSObject method:
- (id) init;

The init method is used by a class to make sure the properties
have suitable inital values. If a method returns a pointer it is
possible to nest method calls:
NSObject *newObject = [[NSObject alloc] init];

12 / 22



Dont

Dont do this:
NSObject *newObject = [NSObject alloc];

[newObject init];

Because if init returns a different pointer we’ll be left with a
pointer that was originally allocated but never initialized.

13 / 22



id

In order to keep track of an object in memory we need to use a
pointer. Because of ObjC’s dynamic nature the class type of that
pointer doesn’t matter as the correct method will be called on the
relevant object when you send it a message. The id type specifies a
generic object pointer.
id someObject = @"Hello World!";

[someObject removeAllObjects];

This compiles because the compiler has no further information
about the object although we know it’s a string. However, a
NSString object can’t respond to removeAllObjects so we’ll get an
exception at runtime. Whereas with the following code the
compiler will generate an error because removeAllObjects is not
declared in any public interface of NSString;
NSString *someObject = @"Hello World!";

[someObject removeAllObjects];

14 / 22



nil

If we declare an object pointer without initializing it the variable
will automatically point to nil.
Person *somePerson; // somePerson is automatically set to nil

This is considered best practice if no better initialization value is
available because it is perfectly acceptable in ObjC to send a
message to nil as nothing will happen. However, if you expect a
return value from a message send to nil the return value will be nil
for object return types, 0 for numeric types and NO for BOOL. To
check whether an object is nil we can use standard C inequality
operator
if (somePerson != nil){

// somePerson points to an object

}

15 / 22



nil

or simply supply the variable:
if(someObject){

// somePerson points to an object

}

because if it is nil its logical value is 0.

16 / 22



Memory Management

Memory management model is based on object ownership:

I Any object may have one or many owners

I As long as it has at least one owner it exists (otherwise it will
be destroyed)

Object ownership rules:

I You own an object you create (alloc, new, copy) or retain
explicitly

I Relinquish ownership with release or autorelease

With automatic reference counting we don’t have to retain or
release manually.

17 / 22



Automatic Reference Counting

Automatic reference counting can be understood as some
preprocessing step that virtually inserts release and autorelease
statements into code. In general we don’t have to worry about
memory management. However, we can introduce memory leaks
through cirular references.

18 / 22



Circular References

Assume we have two objects - A and B. A has a strong reference
to B and B has a strong reference to A. In this case ARC will not
be able to release any of these objects:
@interface A : NSObject

@property (nonatomic, strong) NSObject *b;

@end

@implementation A

@end

@interface B : NSObject

@property (nonatomic, strong) NSObject *a;

@end

@implementation B

@end

19 / 22



Circular References

If we create two instances like:
int main(int argc, const char *argv[]){

A *a = [[A alloc] init];

B *b = [[B alloc] init];

// now a and b have reference count == 1

a.b = b

b.a = a

// now a and b have reference count == 2

}

// a and b have now reference count == 1

This code introduces a memory leak as ref count for a and b will
now be 1 at most and they will never be released.

20 / 22



Circular References

The solution is to make one of the references to (weak):
@interface B : NSObject

@property (nonatomic, weak) NSObject *a;

@end

A weak reference does not add a new reference count.

21 / 22



Circular References

int main(int argc, const char *argv[]){

A *a = [[A alloc] init];

B *b = [[B alloc] init];

// now a and b have reference count == 1

a.b = b

b.a = a

// a now has ref count == 1 and b has reference count == 2

}

// a and b have now reference count == 0 and are destroyed

22 / 22


