Gerhard Stenzel, M.Sc. Lehrstuhl für Mobile und Verteilte Systeme Ludwig-Maximilians-Universität München, Institut für Informatik Oettingenstraße 67 Raum G004 Telefon: +49 89 / 2180-9167 Fax: +49 89 / 2180-9148 |
🔬 Research Interests
- Quantum Artificial Intelligence
- Quantum Variational Circuits
- Computer Vision
- Generative Neural Networks (Transformers, LLMs, DDPM)
- Retrieval-Augmented Generation with LLMs
📜 Papers
- Kölle, M., Stenzel, G., Stein, J., Zielinski, S., Ommer, B., & Linnhoff-Popien, C. (2024). Quantum Denoising Diffusion Models. arXiv preprint arXiv:2401.07049.
- Stenzel, G., Zielinski, S., Kölle, M., Altmann, P., Nüßlein, J., & Gabor, T. (2024). Qandle: Accelerating State Vector Simulation Using Gate-Matrix Caching and Circuit Splitting. arXiv preprint arXiv:2404.09213.
- Kölle, M., Witter, T., Rohe, T., Stenzel, G., Altmann, P., & Gabor, T. (2024). A Study on Optimization Techniques for Variational Quantum Circuits in Reinforcement Learning. arXiv preprint arXiv:2405.12354.
- Stenzel, G., Zorn, M., Altmann, P., Mansky, M., Kölle, M., & Gabor, T. (2024). Self-Replicating Prompts for Large Language Models: Towards Artificial Culture. In ALIFE 2024: Proceedings of the 2024 Artificial Life Conference.
- Zorn, M., Altmann, P., Stenzel, G., Kölle, M., Linnhoff-Popien, C., & Gabor, T. (2024). Self-Adaptive Robustness of Applied Neural-Network-Soups. In ALIFE 2024: Proceedings of the 2024 Artificial Life Conference.