Michael Kölle, M.Sc. Lehrstuhl für Mobile und Verteilte Systeme Ludwig-Maximilians-Universität München, Institut für Informatik Oettingenstraße 67 Raum E109 Telefon: +49 89 / 2180-9160 Fax: +49 89 / 2180-9148 |
🔬 Research Interests
- Quantum Artificial Intelligence
- Reinforcement Learning
- Multi-Agent Systems
🎓 Teaching (Assistance)
- Rechnerarchitektur: SS24, SS23, SS22 (Lehrpreis beste Bachelor Vorlesung), SS21
- Betriebssysteme: WS23/24, WS22/23 (Lehrpreis beste Bachelor Vorlesung), WS21/22, WS20/21
- Quantum Applications: SS23, SS22
- Intelligent Systems: WS23/24, WS22/23
- Quantum Computing Programming: SS24, WS23/24, SS23, WS22/23, SS22, WS21/22, SS21
We are always looking for new tutors: Tutor:in für den Lehrbetrieb (m/w/d)
💡 Open thesis ideas
- Offline Quantum Reinforcement Learning using Metaheuristic Optimization Strategies
- Evaluating Robustness using Adversarial Attacks on Quantum Reinforcement Learning Systems
If you are interested in one of the advertised topics above or have your own ideas, send us: Anfrage Abschlussarbeiten
📖 Theses in progress
✅ Completed theses
- Masked Autoencoders for Unsupervised Anomalous Sound Detection – Florian Reusch
- Evaluating Metaheuristic Optimization Algorithms for Quantum Reinforcement Learning – Daniel Seidl
- Influencing behavior through reward manipulation in multi-agent reinforcement-learning – Llewellyn Hochhauser
- Parameter reduction with quantum circuits – The potential of Quantum Proximal Policy Optimization – Timo Witter
- Anomalous Sound Detection with Multimodal Embeddings – Lara Lanz
- A Reinforcement-Learning Environment for purposeful Quantum Circuit Design and Quantum State Preparation – Tom Schubert
- Efficient unsupervised quantum anomaly detection using one-class support vector machines – Afrae Ahouzi
- Exploring Multi-Agent Reinforcement Learning Strategies in a Predator-Prey Setting – Yannick Erpelding
- Quantum-Enhanced Denoising Diffusion Model – Gerhard Stenzel
- Dimensionality Reduction with Autoencoders for Efficient Classification with Variational Quantum Circuits – Jonas Maurer
- Multi-Agent Exploration through Peer Incentivization – Johannes Tochtermann
- Analyzing Reinforcement Learning strategies from a parameterized quantum walker – Lorena Wemmer
- Quantum Multi-Agent Reinforcement Learning using Evolutionary Optimization – Felix Topp
- Efficient quantum circuit architecture for parameterized coined quantum walks on many bipartite graphs – Viktoryia Patapovich
- Scalable Discrete Communication in Decentralized MARL using Clustering – Valentin Kerle
- Generalizing Agents in the Starcraft Multi-Agent Challenge – Balthasar Schüss
- Quantum Enhanced Policy Gradient Methods for Reinforcement Learning – Mohamad Hgog
- Embedding Classical Data for efficient Quantum Machine Learning – David Münzer
- Efficient Data Embedding for offline Handwriting Recognition using Quantum Support Vector Machines – Leopold Bodendörfer
- Efficient embedding in Quantum Support Vector Machines using a specialized NISQ approach – Jonathan Wulf
- A comparison of Generative Adversarial Networks and Variational Autoencoders for Density Estimation – Gerhard Stenzel
- Anomaly Detection on Medical Images using Classification of Clustering Results – Sebastian Haugg
- A Risk-Sensitive Approach for modeling the Hedging Portfolio Problem with Reinforcement Learning – Quentin Mathieu
- Exploring the impact of markets on the credit assignment problem in a multi-agent environment – Zarah Zahreddin
- Learning to Participate through Trading of Reward Shares – Tim Matheis
👥 Community
- IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024: Reviewer
- Springer Nature – Computer Science: Reviewer
- IEEE International Conference on Quantum Software: Session Chair
- IEEE International Conference on Quantum Computing and Engineering – Quantum Machine Learning Workshop: Program Committee
- The 39th Annual AAAI Conference on Artificial Intelligence: Program Committee
- Quantum Artificial Intelligence & Optimization 2025: Organizer & Session Chair
📚 Publications
Full List -> Google Scholar
2024
- T. Rohe, S. Grätz, M. Kölle, S. Zielinski, J. Stein, and C. Linnhoff-Popien, „From Problem to Solution: A general Pipeline to Solve Optimisation Problems on Quantum Hardware,“ arXiv preprint arXiv:2406.19876, 2024.
[BibTeX]@article{rohe2024problem, title={From Problem to Solution: A general Pipeline to Solve Optimisation Problems on Quantum Hardware}, author={Rohe, Tobias and Gr{\"a}tz, Simon and K{\"o}lle, Michael and Zielinski, Sebastian and Stein, Jonas and Linnhoff-Popien, Claudia}, journal={arXiv preprint arXiv:2406.19876}, year={2024} }
- M. Kölle, T. Witter, T. Rohe, G. Stenzel, P. Altmann, and T. Gabor, „A Study on Optimization Techniques for Variational Quantum Circuits in Reinforcement Learning,“ arXiv preprint arXiv:2405.12354, 2024.
[BibTeX]@article{kolle2024study, title={A Study on Optimization Techniques for Variational Quantum Circuits in Reinforcement Learning}, author={K{\"o}lle, Michael and Witter, Timo and Rohe, Tobias and Stenzel, Gerhard and Altmann, Philipp and Gabor, Thomas}, journal={arXiv preprint arXiv:2405.12354}, year={2024} }
- L. Sünkel, M. Kölle, T. Rohe, and T. Gabor, „Towards Federated Learning on the Quantum Internet,“ in International Conference on Computational Science, 2024, p. 330–344.
[BibTeX]@inproceedings{sunkel2024towards, title={Towards Federated Learning on the Quantum Internet}, author={S{\"u}nkel, Leo and K{\"o}lle, Michael and Rohe, Tobias and Gabor, Thomas}, booktitle={International Conference on Computational Science}, pages={330--344}, year={2024}, organization={Springer} }
- M. Zorn, P. Altmann, G. Stenzel, M. Kölle, C. Linnhoff-Popien, and T. Gabor, Self-Adaptive Robustness of Applied Neural-Network-Soups, 2024. doi:10.1162/isal_a_00811
[BibTeX] [Download PDF]@proceedings{zorn24selfadapt, author = {Zorn, Maximilian and Altmann, Philipp and Stenzel, Gerhard and Kölle, Michael and Linnhoff-Popien, Claudia and Gabor, Thomas}, title = "{Self-Adaptive Robustness of Applied Neural-Network-Soups}", volume = {ALIFE 2024: Proceedings of the 2024 Artificial Life Conference}, series = {Artificial Life Conference Proceedings}, pages = {74}, year = {2024}, month = {07}, doi = {10.1162/isal_a_00811}, url = {https://doi.org/10.1162/isal\_a\_00811}, eprint = {https://direct.mit.edu/isal/proceedings-pdf/isal2024/36/74/2461231/isal\_a\_00811.pdf}, }
- S. Zielinski, J. Nüßlein, M. Kölle, T. Gabor, C. Linnhoff-Popien, and S. Feld, „Solving Max-3SAT Using QUBO Approximation,“ arXiv preprint arXiv:2409.15891, 2024.
[BibTeX]@article{zielinski2024solving, title={Solving Max-3SAT Using QUBO Approximation}, author={Zielinski, Sebastian and N{\"u}{\ss}lein, Jonas and K{\"o}lle, Michael and Gabor, Thomas and Linnhoff-Popien, Claudia and Feld, Sebastian}, journal={arXiv preprint arXiv:2409.15891}, year={2024} }
- J. Stein, N. Roshani, M. Zorn, P. Altmann, M. Kölle, and C. Linnhoff-Popien, „Improving Parameter Training for VQEs by Sequential Hamiltonian Assembly,“ in Proceedings of the 16th International Conference on Agents and Artificial Intelligence – Volume 2: ICAART, 2024, pp. 99-109. doi:10.5220/0012312500003636
[BibTeX]@inproceedings{stein2023improving, title={Improving Parameter Training for VQEs by Sequential Hamiltonian Assembly}, author={Stein, Jonas and Roshani, Navid and Zorn, Maximilian and Altmann, Philipp and K{\"o}lle, Michael and Linnhoff-Popien, Claudia}, booktitle={Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART}, year={2024}, pages={99-109}, publisher={SciTePress}, organization={INSTICC}, doi={10.5220/0012312500003636}, isbn={978-989-758-680-4}, issn={2184-433X}, }
- J. Stein, T. Rohe, F. Nappi, J. Hager, D. Bucher, M. Zorn, M. Kölle, and C. Linnhoff-Popien, „Introducing Reducing-Width-QNNs, an AI-inspired Ansatz design pattern,“ in Proceedings of the 16th International Conference on Agents and Artificial Intelligence – Volume 3: ICAART, 2024, pp. 1127-1134. doi:10.5220/0012449800003636
[BibTeX]@inproceedings{stein2023introducing, title={Introducing Reducing-Width-QNNs, an AI-inspired Ansatz design pattern}, author={Stein, Jonas and Rohe, Tobias and Nappi, Francesco and Hager, Julian and Bucher, David and Zorn, Maximilian and K{\"o}lle, Michael and Linnhoff-Popien, Claudia}, booktitle={Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART}, year={2024}, pages={1127-1134}, publisher={SciTePress}, organization={INSTICC}, doi={10.5220/0012449800003636}, isbn={978-989-758-680-4}, issn={2184-433X}, }
- M. Kölle, M. Hgog, F. Ritz, P. Altmann, M. Zorn, J. Stein, and C. Linnhoff-Popien, „Quantum Advantage Actor-Critic for Reinforcement Learning,“ in Proceedings of the 16th International Conference on Agents and Artificial Intelligence – Volume 1: ICAART, 2024, pp. 297-304. doi:10.5220/0012383900003636
[BibTeX]@inproceedings{kolle2024quantum, title={Quantum Advantage Actor-Critic for Reinforcement Learning}, author={K{\"o}lle, Michael and Hgog, Mohamad and Ritz, Fabian and Altmann, Philipp and Zorn, Maximilian and Stein, Jonas and Linnhoff-Popien, Claudia}, booktitle={Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART}, year={2024}, pages={297-304}, publisher={SciTePress}, organization={INSTICC}, doi={10.5220/0012383900003636}, isbn={978-989-758-680-4}, issn={2184-433X}, }
- M. Kölle, T. Schubert, P. Altmann, M. Zorn, J. Stein, and C. Linnhoff-Popien, „A Reinforcement Learning Environment for Directed Quantum Circuit Synthesis,“ in Proceedings of the 16th International Conference on Agents and Artificial Intelligence – Volume 1: ICAART, 2024, pp. 83-94. doi:10.5220/0012383200003636
[BibTeX]@inproceedings{kolle2024reinforcement, title={A Reinforcement Learning Environment for Directed Quantum Circuit Synthesis}, author={K{\"o}lle, Michael and Schubert, Tom and Altmann, Philipp and Zorn, Maximilian and Stein, Jonas and Linnhoff-Popien, Claudia}, booktitle={Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART}, year={2024}, pages={83-94}, publisher={SciTePress}, organization={INSTICC}, doi={10.5220/0012383200003636}, isbn={978-989-758-680-4}, issn={2184-433X}, }
2023
- M. Kölle, A. Giovagnoli, J. Stein, M. B. Mansky, J. Hager, T. Rohe, R. Müller, and C. Linnhoff-Popien, „Weight Re-mapping for Variational Quantum Algorithms,“ in International Conference on Agents and Artificial Intelligence, 2023, p. 286–309.
[BibTeX]@inproceedings{kolle2023weight, title={Weight Re-mapping for Variational Quantum Algorithms}, author={K{\"o}lle, Michael and Giovagnoli, Alessandro and Stein, Jonas and Mansky, Maximilian Balthasar and Hager, Julian and Rohe, Tobias and M{\"u}ller, Robert and Linnhoff-Popien, Claudia}, booktitle={International Conference on Agents and Artificial Intelligence}, pages={286--309}, year={2023}, organization={Springer} }
- T. Phan, F. Ritz, P. Altmann, M. Zorn, J. NNüßlein, M. Kölle, T. Gabor, and C. Linnhoff-Popien, „Attention-Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic Partial Observability,“ in Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
[BibTeX] [Download PDF]@inproceedings{phanICML23, author = {Thomy Phan and Fabian Ritz and Philipp Altmann and Maximilian Zorn and Jonas NN{\"u}{\ss}lein and Michael K{\"o}lle and Thomas Gabor and Claudia Linnhoff-Popien}, title = {Attention-Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic Partial Observability}, year = {2023}, publisher = {PMLR}, booktitle = {Proceedings of the 40th International Conference on Machine Learning (ICML)}, location = {Hawaii, USA}, url = {https://thomyphan.github.io/publication/2023-07-01-icml-phan}, eprint = {https://thomyphan.github.io/files/2023-icml-preprint.pdf}, }
- J. Stein, F. Chamanian, M. Zorn, J. Nüßlein, S. Zielinski, M. Kölle, and C. Linnhoff-Popien, „Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA,“ , p. 2254–2262, 2023. doi:10.1145/3583133.3596358
[BibTeX] [Download PDF]@article{stein2023evidence, title={Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA}, author={Stein, Jonas and Chamanian, Farbod and Zorn, Maximilian and N{\"u}{\ss}lein, Jonas and Zielinski, Sebastian and K{\"o}lle, Michael and Linnhoff-Popien, Claudia}, year = {2023}, isbn = {9798400701207}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3583133.3596358}, doi = {10.1145/3583133.3596358}, booktitle = {Proceedings of the Companion Conference on Genetic and Evolutionary Computation}, pages = {2254–2262}, numpages = {9}, location = {Lisbon, Portugal}, series = {GECCO '23 Companion} }
- M. Kölle, S. Illium, M. Zorn, J. Nüßlein, P. Suchostawski, and C. Linnhoff-Popien, „Improving Primate Sounds Classification using Binary Presorting for Deep Learning.“ 2023.
[BibTeX]@inproceedings {koelle23primate, title = {Improving Primate Sounds Classification using Binary Presorting for Deep Learning}, author = {K{\"o}lle, Michael and Illium, Steffen and Zorn, Maximilian and N{\"u}{\ss}lein, Jonas and Suchostawski, Patrick and Linnhoff-Popien, Claudia}, year = {2023}, organization = {Int. Conference on Deep Learning Theory and Application - DeLTA 2023}, publisher = {Springer CCIS Series}, }
2022
- S. Illium, G. Griffin, M. Kölle, M. Zorn, J. Nüßlein, and C. Linnhoff-Popien, VoronoiPatches: Evaluating A New Data Augmentation MethodarXiv, 2022. doi:10.48550/ARXIV.2212.10054
[BibTeX] [Download PDF]@misc{https://doi.org/10.48550/arxiv.2212.10054, doi = {10.48550/ARXIV.2212.10054}, url = {https://arxiv.org/abs/2212.10054}, author = {Illium, Steffen and Griffin, Gretchen and Kölle, Michael and Zorn, Maximilian and Nüßlein, Jonas and Linnhoff-Popien, Claudia}, keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {VoronoiPatches: Evaluating A New Data Augmentation Method}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} }
- S. Illium, M. Zorn, C. Lenta, M. Kölle, C. Linnhoff-Popien, and T. Gabor, Constructing Organism Networks from Collaborative Self-ReplicatorsarXiv, 2022. doi:10.48550/ARXIV.2212.10078
[BibTeX] [Download PDF]@misc{https://doi.org/10.48550/arxiv.2212.10078, doi = {10.48550/ARXIV.2212.10078}, url = {https://arxiv.org/abs/2212.10078}, author = {Illium, Steffen and Zorn, Maximilian and Lenta, Cristian and Kölle, Michael and Linnhoff-Popien, Claudia and Gabor, Thomas}, keywords = {Neural and Evolutionary Computing (cs.NE), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Constructing Organism Networks from Collaborative Self-Replicators}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} }
- K. Schmid, M. Kölle, and T. Matheis, „Learning to Participate through Trading of Reward Shares,“ , 2022.
[BibTeX]@article{schmidlearning, title = {Learning to Participate through Trading of Reward Shares}, author = {Schmid, Kyrill and Kölle, Michael and Matheis, Tim}, year = {2022} }
- M. Kölle, L. Rietdorf, and K. Schmid, Decentralized scheduling through an adaptive, trading-based multi-agent systemarXiv, 2022. doi:10.48550/ARXIV.2207.11172
[BibTeX] [Download PDF]@misc{https://doi.org/10.48550/arxiv.2207.11172, doi = {10.48550/ARXIV.2207.11172}, url = {https://arxiv.org/abs/2207.11172}, author = {Kölle, Michael and Rietdorf, Lennart and Schmid, Kyrill}, keywords = {Artificial Intelligence (cs.AI), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Decentralized scheduling through an adaptive, trading-based multi-agent system}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} }
- A. Sedlmeier, M. Kölle, R. Müller, L. Baudrexel, and C. Linnhoff-Popien, „Quantifying Multimodality in World Models,“ in Proceedings of the 14th International Conference on Agents and Artificial Intelligence – Volume 1: ICAART,, 2022, pp. 367-374. doi:10.5220/0010898500003116
[BibTeX]@conference{multimod_icaart22, author = {Andreas Sedlmeier and Michael Kölle and Robert Müller and Leo Baudrexel and Claudia Linnhoff-Popien}, title = {Quantifying Multimodality in World Models}, booktitle = {Proceedings of the 14th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,}, year = {2022}, pages = {367-374}, publisher = {SciTePress}, organization = {INSTICC}, doi = {10.5220/0010898500003116}, isbn = {978-989-758-547-0} }